18

Structured Low-density

PROCEEDINGS 5TH AUSTRALIAN COMMUNICATION THEORY WORKSHOP 2004

Parity-check Codes over

Non-binary Fields
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Abstract—This paper considers low-density parity-check
(LDPC) codes defined over non-binary finite fields GF(g),q = 2P.
We find that the difficulty in constructing g-ary LDPC codes
whose Tanner graphs are free of short cycles increases as the
order of the field increases. By employing combinatorial designs
to devise structured g-ary LDPC codes with guaranteed minimum
girth, we show that significant improvements in performance over
binary LDPC codes are possible, particularly in the case of short,
or high rate, codes. We present a simple construction for rank
deficient g-ary LDPC codes.

Index Terms— Low-density parity-check codes, non-binary
codes, rank-deficient parity-check matrices.

I. INTRODUCTION

Low-density parity-check (LDPC) forward error-correcting
codes were first presented by Gallager [1] in 1962. Having
been largely overlooked for some 35 years, LDPC codes are
presently the focus of intense research interest in view of
their Shannon limit approaching performance when combined
with iterative decoding algorithms such as the sum-product
algorithm [2], [3].

While a substantial, and rapidly expanding, literature now
exists on binary LDPC code construction and decoding, com-
paratively little is known about generalizations to non-binary
alphabets, in which codeword symbols are selected from finite
fields GF(q), g = 2P, p > 2; see, for example [4]-[7]. In some
of the earliest work on such g-ary LDPC codes, Davey and
MacKay demonstrated that LDPC codes defined over non-
binary fields can substantially outperform binary LDPC codes
over the binary symmetric channel (BSC) and additive white
Gaussian noise (AWGN) channel [4], [5].

Davey showed that there is an optimum column weight
which decreases as the order of the field increases, concluding
that the best results could be generated by choosing the highest
order field that is feasible and then selecting an appropriate
mean column weight [5]. As is the case for most binary LDPC
code constructions, once the optimal weight distribution has
been determined, the g-ary codes are constructed randomly.
Consequently there are no guarantees on the performance or
properties of any individually randomly generated code.

For very long codes this is not a problem as good codes are
easily constructed randomly, and convergence to an ensemble
average in the long codeword limit has been established
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[3]. However for short codes there is typically a significant
performance gap between the best and worst codes of a
particular ensemble and, especially for higher rate codes, good
codes can be difficult to construct. By way of example, Davey
notes that for g-ary LDPC codes with rates exceeding 2/3,
and for codes of length 2000 or less, it is necessary to impose
constraints on the parity-check matrix to avoid low weight
codewords responsible for unacceptable error floors at high
signal-to-noise ratios [5].

The constraints typically imposed on the pseudo-randomly
constructed parity-check matrices of binary LDPC codes are
that the parity-check matrix be regular (or nearly so), and that
the code be free of short cycles, especially cycles of length
4. However, as we will see in this paper, the difficulties in
constructing code without 4-cycles are compounded as the
order of the field increases. As a solution to this problem
we consider structured g-ary LDPC codes defined by taking
as our starting point (binary) parity-check matrices chosen as
the incidence matrices associated with certain combinatorial
designs, selected to achieve the required code properties.

An interesting outcome of the research into binary algebraic
LDPC codes has been the recognition of the key role played
by rank deficient parity-check matrices in improving LDPC
code performance [8]-[10]. In this paper we propose a method
of incorporating linear dependence in g-ary LDPC codes and
show that rank deficient parity-check matrices can also play a
significant role in improving the performance of g-ary LDPC
codcs.

II. g-ARY LDPC CODES

A g-ary LDPC code is defined as the null space of a sparse
parity-check matrix H having non-zero entries selected from
a finite field of order ¢ = 27, denoted GF(q). Thus in a g-ary
LDPC code, each code symbol ¢; € GF(q) represents p data
bits, and codewords ¢ = [ ¢y ---cn | satisfy ¢cH' = 0.

For the sake of concreteness in this paper, we focus on
LDPC codes defined over GF(4), although the results gen-
eralize naturally to higher order fields GF(q),q = 2°, for
b > 3. The field GF(4) can be thought of as the element
set {0,1, ¢, + 1}, where a® = o + 1. Writing /3 in place
of @+ 1, so that a8 = ala+ 1) = &% + « 1 and
B2 = (a+ 1) = a? + 1 = a, gives the field operations
shown in Fig. 1.

1 1
5o

For example, the matrix
0= [ 0
(0%
is the parity-check matrix of a 4-ary code of rate R = 1/3 and
length N = 3. The generator matrix for this code, obtained



STRUCTURED LOW-DENSITY PARITY-CHECK CODES OVER NON-BINARY FIELDS 19

+]0 1 a B -0 1 a B
010 1 a B 00 0 0 O
11 0 8 « 1{0 1 «a p
ala g 0 1 a|l0 o g 1
G118 a 1 0 10 B 1 «

Fig. 1: Field operations for GF(4) = {0, 1, o, 8}

using Gaussian elimination, is

G=[1 3 8],
and the codewords are thus:
(000}, [183)], [all], [Baa]l

The Tanner graph of a g-ary LDPC code is defined as
for a binary LDPC code, with one constraint vertex in the
graph for each parity-check constraint, and a symbol vertex
corresponding to each code symbol. A symbol vertex is
connected to a constraint vertex only if the corresponding
entry of H is non-zero. Tanner’s introduction of such graphs
[11] extended the single parity-check constraints of Gallager’s
LDPC codes to arbitrary linear code constraints. In the case of
non-binary LDPC codes the code constraint is a single parity-
check, over GF(q), of the connected symbol nodes. A code
parity-check matrix is uniquely described by a Tanner graph,
although translating from the graph to the matrix requires an
ordering of nodes corresponding to an ordering of rows and
columns in H.

A cycle in the Tanner graph of a g-ary LDPC code is defined
as a sequence of connected vertices in the graph which start
and end at the same vertex, and which contains no other vertex
more than once. The length of the cycle is the number edges
it contains, and the girth of a graph is the length of its shortest
cycle. With a slight abuse of terminology, we call the girth of
an LDPC code what is strictly the girth of the Tanner graph
associated with the given parity-check matrix H for that code.

Traditionally, to construct g-ary LDPC codes a sparse binary
matrix, Ho, is first constructed pseudo-randomly, as in [12],
[13], and the non-zero entries in the binary matrix randomly
assigned a value from the field GF(q) to give the matrix H,
[4], [5]. In this way the density and girth properties of the
randomly generated binary matrix, H,, are retained in the ¢-
ary code. In this paper we propose instead that a structured
binary incidence matrix be used as the basis for the non-binary
code to better control the code properties. Secondly we show
that better codes can be produced by carefully controlling the
allocation of the field elements to the entries of Ho.

A. Description of g-ary sum-product decoding

The aim of sum-product decoding is to compute the «
posteriori probability (APP) for each codeword symbol, P} =
P{c; = a | N}, which is the probability that the ith codeword
symbol is a, « € GF(q), conditional on the event A that
all parity-check constraints are satisfied. The infrinsic or a
priori probability, Pi}, is the original symbol probability

independent of knowledge of the code constraints, and the
extrinsic probability Pef represents what has been learned
from the parity checks.

The extrinsic probability that symbol ¢ is a from the jth

parity-check equation is:
Pel;= % Plmlx) ] Piy, ()
Xxr;=a i'E.Bj.'i'yéi

where the set B; is the set of codeword symbols in the jth
parity-check equation of the code and x is the set of all valid
codewords.

The estimated APP of the ith symbol at each iteration is
the product of the intrinsic and extrinsic probabilities for that

symbol:
1T Pesss 2)
JEALTH#T

e N & PN 1
Pi} s = v jPo;

where A; is the set of parity-check equations which check on
the ith code symbol. Here «y; ; is a scaling factor to ensure
that the probabilities sum to 1, i.e. for all ¢, 7,

> Pz =1
a€GF(q)

The probability Pof is the initial probability that symbol :
is a based only on the received signal and knowledge of the
channel.

The estimated APP probabilities at the end of the iteration
are then

P =apof T Pety, (3)
JEA;
where again ¢; is a scaling factor to ensure that for all 4,
> oPr=1
a&GF(g)

Calculation of the extrinsic probability is via the forward
backward algorithm. The forward probabilities

Fz‘?j =P (Z Hj’]\-l‘k = a.> R (4)

k<i

and backward probabilities,

Bf; =P (Z H; gy, = a) : (3)
k>i
together give the probability that check 7 is satisfied if symbol

1 1S a:

stEGF(q):Hj wa+s+t=0

Pel; =

e ;= F;jBfJ (6)
For a detailed description of the application of the forward-
backward algorithm to the calculation of extrinsic probabilities
in the sum-product algorithm see [5].

The extrinsic symbol information obtained from a parity-
check constraint is calculated independently of the a priori
value for that symbol at the start of the iteration. However,
the extrinsic information provided in subsequent iterations
remains independent of the original a priori symbol probability
only until that information is returned via a cycle. If the
Tanner graph of the code is cycle free the probabilities remain



independent and the exact APP value is calculated for each
symbol. Decoding is terminated if the hard decision on the
estimated APP probabilities, (&), is a valid codeword (¢H' =
0), or if the maximum number of allowed iterations has been
reached.
To summarize, the operation of g-ary sum-product decoding
is as follows.
o Initialization: The symbol probabilities are initialized
with the received probabilities: Pif ; = Pof
o Step I The extrinsic probabilities (1) are calculated using
equations (4)H6)
» Step 2: The partial APPs of each codeword symbol are
estimated; see (2)
o Step 3: 1f the hard decision of the cstimated symbol APPs
(3) is a valid codeword, decoding halts, otherwise return
to Step 1.

For each decoding iteration, the ¢g-ary LDPC codes require
the calculation of ¢ separate extrinsic and intrinsic probabilities
for each non-zero entry in H, as compared to the calculation
of just two such probabilities for binary codes. However, the
equivalent length binary LDPC code, Ny = logy(q) N, (with
the same average column weight) will have log,(g) times as
many non-zero entries. Increasing the order of the field is
comparable to increasing the memory of convolutional codes,
since the state space of each node in the graph is increased
by decoding over GF(q) [5].

I1I. RANDOMLY CONSTRUCTED ¢-ARY LDPC CODES

In this section we show the performance of binary and 4-
ary LDPC codes which are randomly constructed as in [4],
[5]. To avoid biased results caused by randomly selecting a
particularly good or bad code from the ensemble of all regular
codes with a given size and column weight for H we have
randomly generated a new LDPC code for each decoding trial.

Following Davey [5], we consider transmission on binary-
input AWGN channels, so that noise is added bitwise and
independently of the grouping of bits into symbols. The a
priori symbol probability is the product of the a priori bit
probabilities of its constituent bits.

In Fig. 2 the decoding performance of randomly constructed
binary and 4-ary LDPC codes with equivalent rate (0.5) and
length (100 bits) is shown. To generate the binary LDPC code
requires a sparse binary matrix of size 50 x 100 while to
generate a 4-ary LDPC code requires a sparse binary matrix
with the same column weight but of size 25 x 50 for which the
non-zero entries are randomly assigned values from GF(4).

We see that even for this very short code there is a modest
performance improvement gained by considering 4-ary codes.
However, as we shall see in the following, it is more difficult
to constrain the code ensembles, for example by requiring a
minimum girth of 6, as the field order is increased.

A. Constraining code properties

For short LDPC codes, particularly for higher rate codes,
good codes can be difficult to construct and so there are a
number of modifications to the pseudo-random construction
to attempt to remove any 4-cycles in the randomly generated
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Fig. 2: The error correction performance of binaty and 4-ary LDPC codes
with equivalent rate (0.3) and length (100 bits). The codes are constructed
randomly with column weight 3 and row weight 6.

binary matrix (see e.g. [12], [14]). We employ the pseudo-
random code construction procedure of MacKay and Neal
[12], using source code from [13].

Using this process it becomes significantly more difficult
to construct 4-cycle free codes as the field order is increased.
This is because the size of the initial binary matrix required
is log,(q) times smaller than for the binary code, and so as
q is increased we nced to be able to generate progressively
smaller matrices which are free of 4-cycles, a significantly
more difficult task.

For example, we use the same code parameters as in the
previous section, a code with binary length of 100 bits and rate
1/2, but this time attempt to remove cycles from the LDPC
codes. To generate a binary LDPC code requires a sparse
binary matrix of size 50 x 100 which is 4-cycle free while to
generate a d-ary LDPC code requires a sparse binary matrix
with the same column weight but of size 25 x 50 which is
also 4-cycle free. With a factor of just 1/2 in the matrix size,
we are now unable to remove most of the 4-cycles using the
construction method of [12].

The average performance of binary and equivalent length
4-ary codes constructed in this way is shown in Fig 3. With
a maximum of just one iteration, cycles in the code can have
no effect and so the performance of both codes is similar.
However, since we were unable to remove 4-cycles from the
majority of the 4-ary codes we see that, as expected, the
performance of the 4-ary code is worse than the equivalent
length binary code once more than one iteration is allowed.
For this reason we consider in the following the algebraic
design of g-ary LDPC codes to achieve the code properties
we require.

IV. STRUCTURED g-ARY LDPC CODES

A natural solution to the difficulty of pseudo-randomly
constructing small high rate g-ary LDPC codes is to consider
algebraically constructed matrices, using incidence structures
from combinatorial designs and finite geometries, a technique



STRUCTURED LOW-DENSITY PARITY-CHECK CODES OVER NON-BINARY FIELDS 21

Bit error rate

. —- 0 iterations \Ek‘
1077 ~+ A-ary code - 1 iterabon | NN El
—- Binary code - 1 iteration | N ]
—=— 4-ary code ~ 5 ileralions ~
—G- Binary code - 5iterations ~ g
10'4 | L I L 1 L 1
1 18 2 25 3 35 4 45 5

Signal-to-noise ralio (dB)

Fig. 3: The error correction performance of bimary and 4-ary LDPC codes
with equivalent rate (0.5) and length (100 bits) using sum-product decoding
with a maximum of 5 iterations. The codes are constructed randomly with
column weight 3 and row weight 6, and with modifications made to the codes
to avoid 4-cycles.

which has proven successful for the construction of binary
LDPC codes with guaranteed minimum girth and minimum
distance [8] [10], [15]-[18].

In this section we design g-ary LDPC codes from finite
incidence structures known as Kirkman triple systems (KTSs)
and unital designs. Let P be a wv-set, and suppose that B is
a collection of ~-subsets of P with the property that each ¢-
subset of P is in exactly A of the elements of B. Then the
ordered pair D = (P,B) is called a t-(v,~, \) design, or
simply a ¢-design. The elements of P are called points, and
the elements of B are blocks.

Ift > 2and A = 1, then a t-design is called a Steiner
system, or a Steiner t-design. A Steiner 2-design thus has the
property that every pair of points in the design occur together
in exactly one block of the design. A resolution of a design
D is a partition of the blocks of D into classes such that each
point of T is in precisely one block from each class; such a
design is said to be resolvable.

Resolvable Steiner 2-designs with block size v = 3 are
known as Kirkman triple systems. It is these incidence struc-
tures that we employ in this section; see also [16]. The second
class of incidence structures that we employ are the unital
designs, an infinite class of 2-(m® + 1,m + 1,1) designs;
see [19] for construction details and an application to the
construction of binary LDPC codes.

Given a binary parity-check matrix, we randomly assign
values from GF(g) to the non-zero cntries of structured binary
matrices, and maintain their guaranteed regularity and mini-
mum girth., The minimum distance properties guaranteed for
binary LDPC codes free of 4-cycles can also be translated to
g-ary LDPC codes, as we see in the following.

Lemma I: The minimum distance of a g-ary LDPC code
with column weight ~ and no 4-cycles is:

({'min S Y + 1.
Proof: The result follows from Massey’s observation that
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Fig. 4: The error correction performance of binary and 4-ary LDPC codes
with equivalent rate (0.57) and length (70 bits) using sum-product decoding
with a maximum of 5 iterations. The value of the entries in the 4-ary KTS
codes are allocated randomly however the position of the non-zero entries
remains as determined by the incidence of the KTS(15) design. The 4-ary
KTS code is compared to both binary and 4-ary codes constructed randomly
with column weight 3, row weight 7, and 4-cycles removed when possible.

a weight w codeword in a code with parity-check matrix H
corresponds to a set of w columns in H which are linearly
dependent {20]. For a binary code this requires that any row
of H incident in the set of w columns is incident an even
number of times. For non-binary LDPC codes the requirement
for linearly dependent columns is relaxed, namely that any row
of H incident in the set of w columns is incident at least twice.
However, if 4-cycles are avoided in H at least v+ 1 columns
are needed to ensure that every row incident in the column set
is incident twice and so in both cases, binary and g¢-ary, the
code minimum distance is lower bounded by v + 1. ||

Note that the minimum distance of the g-ary LDPC code
will not necessarily be the same as the binary code constructed
from the same matrix since different allocations of ¢g-ary values
to the non-zero entries in H can change the linear dependence
of the columns.

To demonstrate the benefit of constructing g-ary LDPC
codes using the incidence matrices of combinatorial designs, a
very short (N = 35) and high rate (R = 0.7) 4-ary LDPC code
which is free of 4-cycles is constructed by randomly allocating
values from GF(4) to the non-zero entries of the incidence ma-
trix of a Kirkman triple system on 15 points. Fig. 4 shows the
performance of this code compared to randomly constructed
binary LLDPC codes of the same rate and equivalent length
(Np = 70).

The performance improvement achieved by using algebraic
4-ary LDPC codes is significant for such a short code: 1 dB
gain at a bit error rate of 1073, The randomly constructed
4-ary codes perform quite poorly compared to their binary
equivalents. However, due in most part to the guaranteed girth,
the 4-ary KTS codes significantly outperform the randomly
constructed 4-ary codes and outperform the binary codes as
well.
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A. Designing rank deficient q-ary LDPC codes

An interesting outcome of the research into binary algebraic
LDPC codes has been the recognition of the role of rank
deficient parity-check matrices in improving LDPC code per-
formance [8]-[10]. Thus g-ary LDPC codes with parity-check
matrices containing a significant portion of linearly dependent
rows are investigated here.

In generating a ¢g-ary LDPC code from a binary matrix
which is rank deficient, assigning entries randomly will not
necessarily preserve the linear dependence. To preserve linear
dependence we require that the ¢-ary sum over any combina-
tion of rows of I, is zero if the binary sum of those rows
in H- is zero. Thus it is the allocation of the entries within a
column rather that between columns which are important. An
examination of the ficld operations for GF(4) in Fig. 1 shows
that to preserve linear dependence we need only to allocate the
same g-ary value to all of the non-zero entries in a column.
Which ¢-ary value is assigned to each column can be randomly
allocated across the matrix.

For example, a length 63, rate 2/3, 4-ary I.DPC code which
is free of 4-cycles and contains 7 linearly dependent rows in
H, can be constructed by starting with the incidence matrix
of the unital design on 28 points.

Note that had we wished to maintain the distance distri-
bution of H5 this could have been achieved by allocating the
same field element to every entry in each row of H,. However
since the same minimum distance bound is guaranteed for both
H, and H,, regardless of the distribution of non-zero entries,
and since the ¢-ary code would be expected on average to have
a better minimum distance than the binary code this would not
be expected to improve the code performance.

Fig.5 shows the performance of this code compared to
randomly constructed binary LDPC codes of the same rate and
equivalent length. By constructing a ¢-ary code with linearly
dependent parity-check equations a significant performance
gain can be achieved over randomly constructed full rank
codes with the same length and rate.

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper we considered algebraic constructions for non-
binary LDPC codes. We find that the difficulty in constructing
g-ary LDPC codes which are free of small cycles increases as
the code order is increased and thus algebraic constructions
which guarantee good girth are even more beneficial for non-
binary LDPC codes.

The codes we have considered here have not been optimized
with regards to either the choice of column weight or field
order and so further performance improvements are likely.
Future work will also consider the increased flexibility in
designing matrices with many linearly dependent rows which
is provided by increasing the field order.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, no. 1, pp. 21-28, January 1962.

[2]1 D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes.” Electron. Lett., vol. 32, no. 18, pp.
1645-1646, March 1996, Reprinted Electron. Lett, vol. 33(6), pp. 457—
458, March 1997.

PROCEEDINGS 5TH AUSTRALIAN COMMUNICATION THEQRY WORKSHOP 2004

,\\\
RS
N~
N
ol R 4
U
\ N
SN
\\ S
3 N
2 N ~
[ \
21071 AN 4
5] N ~
B \\ AN
~
N
AN ~
R ~
N
\ *
107 N ]
- Uncoded BPSK \
—¥— Binary code pN
—+— 4-ary unital code \
107" I i I L ¢ I 3 L :
1 15 2 25 3 35 4 45 5 55 8

Signal-to-noise ratio (dB)

Fig. 5: The error correction performance of binary and 4-ary LDPC codes with
equivalent rate (2/3) and length (126 bits) using sum-product decoding with a

“maximum of 5 iterations. The value of the entries in the 4-ary unital codes are

unitorm over a column of A with column values allocated randomly, however
the position of the non-zero entries remains as determined by the incidence
of the unital design. The <4-ary unital code is compared to both binary and
4-ary codes constructed randomly with 4-cycles removed when possible.

[3] T.J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 599--618, February 2001.

(41 M. C. Davey and D. MacKay, “Low-density parity check codes over
GF(q),” IEEE Commun. Letters, vol. 2, no. 6, pp. 165-167, June 1998.

{51 M. C Davey, Error-correction using low-density parity-check codes,
Ph.D. thesis, University of Cambridge, Cambndge, 1999.

[6] K.Nakamura, Y. Kabashima, and D. Saad, “Statistical mechanics of low-
density parity check error-correcting codes over Galois fields,” Ewrophys.
Lett., vol. 56, no. 4, pp. 610-616, November 2001.

[71 H. Song and J. R. Cruz, “Reduced-complexity decoding of Q)-ary LDPC
codes for magnetic recording,” IEEE Trans. Magn., vol. 39, no. 2, pp.
1081-1087, March 2003.

[8] Y. Kou, S. Lin, and M. P. C. Fossonier, “Low-density parity-check codes

based on finite geometries: A rediscovery and new results,” I[EEE Trans.

Inform. Theory, vol. 47, no. 7, pp. 2711-2736, November 2001.

P. O. Vontobel and R. M. Tanner, “Construction of codes based on finite

generalized quadrangles for iterative decoding,” in Proc. International

Symposium on Information Theory (ISIT°2001), Washington, DC, June

24-29 2001, p. 223.

S. J. Johnson and S. R. Weller, “Codes for iterative decoding from partial

geometries,” in Proc. International Symposium on Information Theory

(ISIT'2002), Lausanne, Switzerland, June 30-July 5 2002, p. 310.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE

Trans. Inform. Theory, vol. IT-27, no. 5, pp. 533-547, September 1981.

[12] D. I. C. MacKay, “Good error-correcting codes based on very sparse

matrices,” [EEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431,
March 1999.

[13] R. M. Neal, ,” (www.cs.toronto.edw'radford/homepage.html}).

[14] . A. McGowan and R. C. Williamson, “Removing loops from

LDPC codes,” in Proc. Australian Communications Theory Workshop

(AusCTW 03), Melbourne, Australia, 5-7 Febrary 2003, pp. 140-143.

R. Lucas, M. P. C. Fossorer, Y. Kou, and S. Lin, “Iterative decoding of

one-step majority logic decodable codes based on belief propagation,”

IEEE Trans. Commun., vol. 48, no. 6, pp. 931-937, June 2000.

S. I. Johnson and S. R. Weller, “Resolvable 2-designs for regular low-

density parity-check codes,” JEEE Trans. Commun., vol. 51, no. 9, pp.

1413-1419, September 2003.

S. I. Johnson and S. R. Weller, “A family of irregular LDPC codes with

low encoding complexity,” [EEE Commun. Letters, vol. 7, no. 2, pp.

79-81, February 2003.

S. R. Weller and S. J. Johnson, “Regular low-density parity-check codes

from oval designs,” Eur. Trans. Telecommun., To appear.

S. 1. Johnson and S. R. Weller, “High-rate LDPC codes from unital

designs,” in Proc. IEEE Globecom Conf., San Francisco, CA, December

1-5 2003. )

J. L. Massey, Threshold Decoding,

sachusetts, 1963.

[o

—

[10]

[11]

[15]

[16]

{17]

[18]

[19]

M.LT. Press, Cambridge, Mas-



