
Structured Low-density Parity-check Codes over
Non-binary Fields
Sarah J. .Tohnson and Steven R. Weller

Ahsh'oct-This papcr considers lorv-densit"v paritv-check
(LDPC) codes defined over non-binar), linite fields GF(q), Q : 2p.
We find that tht' difficulty in constructing q-ar)r LI)PC codcs
rvhosc Tanncr graphs are free of short c}'cles increascs as the
order of the field increases. By employing combinatorial designs
to devisc structured q-ary LDPC codcs *'ith guarantted minimum
girth, lve shorv that significant improvt'mcnts in ptrformance over
binary LDPC codes are possiblc, particularlf in the case of short,
or high rate, codes. We present a simple construction for rank
deficicnt q-ary LDPC codes.

Inder Tbrms-Lolv-density parity-check codc's, non-binary
codes, rank-dtrficient paritl-gh..k matriccs.

I. INTRoDIJCTToN

Low-density parity-check (LDPC) fbrward errt'rr-corrcctin{
codes wcrc lrrst presenlcd by Gallager [1] in 1962. Flaving
becn largely overlooked for sone 3,5 years, LDPC codes are
presentiy the focns of intense research interest in view of
their Shannon iimit approaching perfonlance whcn combined
with iterative decoding algorithms such as the sum-product
algorittur t2l, t3l

While a sr"rbstantial, and rapidly expanding, literature now
exists on binary LDPC code construction and decoding, con-
paratively iittle is known about generalizations to non-binary
alphabets, in r.vhich codeword symbols are selected from finite
lields GIr(q), q : '2r',p ) 2; see, for example l4l l7l In some
of the earliest work on such g-ary LDPC codcs, Davey and
MacKay demonstrated that LDPC codes defined over nou-
binary fieids can substantially or-rtperibrm binary LDPC codes
over the binary symmetric channel (BSC) and additive white
Gaussian noise (AWGN) channel [4], t,s.l

Davey showed that there is an optimum column weight
which decreases as the order oftire field increases, concluding
that the best results could be gencrated by choosing the highest
order field that is feasible and then selecting an appropriate
mean column weight [5]. As is the case for most binary LDPC
codc constructions, once the optimal weight distribution has
been determined, the q-ary codes are constructed randomly.
Consequently there are no quarantees or.r 1he performancc or
properties o1- any individually randomly generated code.

tror very long codes this is not a prclblen.r as good codes are
easily constmcted randomly, and corvergence to an ensemble
average in the long codeword limit has been established
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[3]. Flowever for short codes there is typically a significant
performance gap between the best and tvorst codes of a

particular ensemble and, especially for higher rate codes, good
codes can be drfllcult to construct. By way of example, Davey
notes that for q-ary LDPC codes with rates exceedins 2/3,
and lor codes of length 2000 or 1ess, it is necessary to impose
constraints on the parity-check malrix to avoid low weight
codewords responsible for unacceptable error floors at high
signal-to-noise ratios [5|.

The constraints typically imposed on thc pseudo-randomly
constructed panty-check matrices of binary LDPC codes are
that the parity-check matrix be regular (or nearly so), and that
the code be free of shorl cycies, especially cycles o1'length

'1. Howevet as we will see in this papel the difficulties in
constrllcting code without 4-cycles are conpoultded as the
order of the fie1d increases. As a solution to this problen
wc consider structured q-ary LDPC codes defined by taking
as our starting point (binary) parity-check malrices chosen as

the ilcidence natrices associated with certain combinatorial
designs, selected to achieve the required code propenies.

An interesting outcome of the research into binary algebraic
LDPC codes has been the recognition of the key role played
by rank deficient parity-check matrices in improving LDPC
code perfbrmance [8]-[10]. In this paper we propose a method
of incorporating linear dependence in q-ary LDPC codes and
show that rank deficient parity-check matrices can also play a

signilicant role in improving the pcrformance of g-ary LDPC
codes-

IL q-anY LDPC coDES

A q-ary LDPC code is defined as the null space of a sparse
parity-check matrix 11 having non-zero entries selected from
a finite field of order q - 2p, denoted GF(q). Thus in a q-ary
LDPC code, each code symbol c; e GF(q) represents p dala
bits, and codewords c:Icr....r., I satisly cf{l _-- 0.

For the sake of concreteness in this papet we focus on
LDPC codes defined over GF(4), although the results gen-
eralize naturally to higher order fields GF(q), q - 2b, for
b > 3. The field GF(,l) can be thought of as the element
set {0, I,a,c'l1}, where rs'2 : a -F 1. Writing B in piace
of rr + 1, so that cup : ,t1o I 1) - o2 + a: 1 aniiul (,Y t r, 5u ulal cYp : (r(G J 1/ - ar- J
0" @ + 1)2 - cr2 + 1 - a, gives the field operations
shown in Fig. 1.

I-or cxanrple. tlre nratrix

It-

is tlre parity-check matrix of a -l-ary code of rate R - 713 and
length A' - 3. The generator matrix fbr this code, obtained
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Iiig. 1: Field operations for GF(4) - {0, 1, o, B}

using Gaussian elimination, is

G-[r p,B],
and the codewords are thus:

[000], l1 13t3l, Icv11]. ICoo).
The Tanner graph of a q-ary LDPC code is defined as

for a binary LDPC code, with one constraint vertex in the
graph for each parity-check constraint, and a symbol vertex
corresponding to each code symbol. A symbol vertex is
connected to a constraint vertex only if the corresponding
entry of ,I-I is ncln-zero. Tanner's introduction of such graphs

[1 1'l extended the single parity-check constraints of Gallager's
LDPC codes to arbilrary linear code constraints. In the case of
non-binary LDPC codes the code constraint is a single parity-
check, over GF(q), of the connected symbol nodes. A code
parity-check matrix is uniquely described by a Tanner graph,
although translating from the graph to the natrix requires an

ordering of nodes corresponding to an ordering of rows and

columns in 11.

A cycle in the Tanner graph ofa q-ary LDPC code is defined
as a sequence of connected vertices in the graph which start

and end at the sane vertex, and which contains no other vertex
more than once. The length ol the cycle is the number edges
it contains, and the girth of a graph is the length of its shortest

cycle. With a slight abuse of terminology, we call the gifih of
an LDPC code what is strictly the girth of the Tanner graph

associated with the given parity-check matrix H for thal code.

Traditionally, to construct q-ary LDi'C codes a sparse binary
natrix, 112, is first constructed pseudo-randomly, as in [12],
[3], and thc non-zero enlries in the binary matrix randomly
assigned a value from the field GF(q) to give the matrix //n
l4l, t5,1. in this way the density and girth properties of the

randomly generated binary matrix, H2, zre retained in the q-

ary code. In this paper we propose instead that a structured
binary rncidence matrix be used as tire basis for the non-binary
code to better control the code properties. Secondly we show
that better codes can be produced by carefully controlling the

allocation of the field elements to the entries of FI2.

l. Description of q-ary sunr-prodltct decoding

The aim of sun-product decoding is to compute the ,r

po,sl.eriori lttobabilitlt (APP) for each codeword symbol, f)" -
P{ci - o | ,M}, which is the probability that the ith codeword
symbol is a,, a e GF(q), conditional on the event ,A/ that
all parity-check constraints are satisfied. The intrinsic ot a
priori probubill\t, Piq, is the original symbol probability

t9

independent of knou'ledge of the code constraints, and the
oitl'itsic probability Pef represents what has been learned
from the parity checks.

The extrinsic probability that symbol i is a from lhe ,rth

parily-check equation is:

P,i': I P(;1 lx) n Ptl,,', (r)

rvhere the ,., 
", 

;;; ser or."ffil';-bols i' the jth
parity-check equation of the code and x is the set of all valid
codewords.

The estimated APP of the ith symbol at each iteration is

the product of tire intrinsic and extrinsic probabilities for that
symbol:

P:i,i: ^h,iPoi I1 Pef,,,,, (2)
j'€A;,i'li

where Ai is the set of parity-check equations which check on

the ith code symbol. Here 1;,; is a scaling factor 1o ensllre
that the probabilities slrm t0 i, i.e. for all i,.i,

\- pte -j
o 

t-r*rrr' ''',

The probabilrty Poi is the initial probability that symbol i
is a based only on the received signal and knowledge of the

charurel.

The estimatcd APP probabilities at the end of the iteration
are then

pi : t\.iPoi fr t'"i,,,, (3)
j'€.4;

whcre again d.i is a scaling factor to ensure tirat 1br all d,

f P::r
a€GF(q)

Caicuiation of the extrinsic probability is via tirc forward
backward algorithm. The forward probabilities

/\
trf.i-P (lar,u'u -"). G)

\r, ..- /
and backward probabilities.

Bi,i

together give the pro

i is rz:

Pe?,i- I Fi,,B!,,i. (6)

s,t€ GF(q ):11r, 1 a+s+t-0

For a detailed description of the application of the forward-
backward algorithn to the calculation ofextrinsic probabilities
in the sum-product algorithm see [5].

The extrinsic symbol inlbrmation obtained fron a parity-
check constraint is calculated independently of the a priori
value for that symbol at the stafl of the iteration. Flowever,

the extrinsic information provided in subsequent iterations
remains independent of the original a priori symbol probabiiity
only until that infbrmation is returned via a cycle. If the

Tanner graph of the code is cycle free the probabiiities renain
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independent and the exact APP value is calculated fbr each

symbol. Decoding is terminated il the hard decision on the

estimated APP probabilities, (6), is a valid codeword (tH' -
0), or i1'the maximurn number of allowed iterations has been

reached.

To summarize, the operation of q-ary sum-prodr,Lct decoding
is as follows.

. Ittitializotion: The symbol probabilities are initialized
r,vith the received probabiiities: PIi., : Poi

. Step 1: The extrinsic probabilities (1 ) are calculated using
equations (4 H6 )

. Step 2. The partial APPs of each codeword symbol are

estimated; see (2)
, Step -l. lf the lurd decision of the cstimated symbol APPs

(3) is a vaiid codervord, decoding halts, olherwise rcturn
to Step 1.

For each decoding iteration, the q-ary LDPC codes require

the caiculation ofq separate extrinsic and intrinsic probabilities
fbr each non-zero entry in II, as compared to the calculation
of just two sr-rch probabilities for binary codes. Flowever, the

equivalent length binary LDPC code, t\ : log:(q)iV, (with
the same avcn-qe column weight) will have logz(q) times as

many non-zero entries. Increasing the order of the fie1d is
con-rparabie to increasing the memory of convolutional codes,

since the state space of each node in the graph is increased

by decoding over GF(q) [5].

III. RANDOMLY CONSTRUCTED q-ARy LDPC CODES

In this section we show the performance of binary and 4-

ary LDPC codes wirich are randomly constructed as in [4],
[5] To avoid biased results caused by randomly selecting a

particularly good or bad code from the ensemble of all regular

codes with a given size and colnmn weight fbr 11 we have

randonly generated a new LDPC code fbr each decoding trial.
F'ollowing Davey [5], we consider transmission on binary-

input AWGN channeis, so that noise is added bitwise and

independently of the grouping of bits into symbols. The a
priori symbol probability is the product of the a priori bit
probabilities ol its constituent bits.

In Fig.2 the decoding performance of randomly constructed

binary and .1-ary LDPC codes with equivalent rate (0.5) and

length (100 bits) is shown. To generate the binary LDPC code

reqriires a sparse binary matrix of size 50 x 100 while to

generate a 4-ary LDPC code requires a sparse binary matrix
r,vith the same column weight but ol size 25 x 50 for which tire

non-zero entries are random-iy assigned values fiom GF(4).
We see that even lbr this very short code there is a modest

performance improvement gained by considering 4-ary codes.

I-Ioweveq as we shall see in the following, it is more difficult
to constrain the code ensembles, fbr exampie by requiring a

minimnm girth of 6, as the fie1d order is increased.

,4. Constrahti.ttg cotle properties

For short LDPC codes, particuiarly 1br higher rate codes,
goocl codes can be difficult to construct and so there are a

number of modifications to the pseudo-random construction
to attempt to remove any 4-cycles in the randomly generatcd
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Fig. 2: The error correction per1brmance of binary and 4-ary LDPC codes
with equivalent rate (0.5) and length (100 bits). The codes are constmcted
randomly with column rveight 3 and ros, s'eight 6.

binary matrix (see e.g. tl21, t14l). We employ the pscudo-

random code construction procednre ol- MacKay and Neal

[12], using solrrce code fron !31.
Using this process it becorles significantly more difficult

to constrllct .tr-cyc1e fiee ccldes as the held order is increased.
This is because the size of the initial binary rnatrix required
is log2(q) times smaller than for the binary code, and so as

q is increased we nced to be able to generaie progressively
smaller matrices which are fiee of ,l-cycles, a significantly
more difficult task.

For example, we use the same code parameters as in the
previous section, a code with binary length of 100 bits and rate

ll2, but this time attemirt to rcn'rovt: cycles fiom the LDPC
codes. lb generate a binary LDPC code requires a sparse

binary matrix ol size 50 x 100 which is 4-cycie free while to
generate a 4-ary LDPC code requires I sparse binary natrix
with the same column weight but of size 25 x 50 which is
also 4-cyc1e frce. With a factor of just 1/2 in the matrix size,

we are now unable to renove most of the 4-cycles usin-q the

construction method of [12].
The average peribrnance of binary and equivalent length

4-ary codes constructed in this way is shorvn in Fig 3. With
a maximnm of just one iteration, cycles in the code can have

no effect and so the performance of both codes is similar.
However, since we were unable to rernove 4-cycles fron the

majority of the 4-ary codes we see that, as expected, the
perfbrmance of the .l-ary code is worse than the eqr"rivalent

length binary code once more than one iteration is al1owed.

For this reason we consider in the following the algebraic

design of g-ary LDPC codes to achieve the code properties

we require.

IV. S I.RUCTURED q.ARY LDPC CODES

A natural solution to the difliculty of pseudo-randomly
constructing smal1 high rate g-ary LDPC codes is to consider

dgebraically construoted matrices, using incidence structures
fiom combinatorial designs and finite geometries, a technique

e
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Fig. 3: The crror conection perfonnancc of binary and 4-ary I,DPC codes
u,ith cqurvalelt rate (U.5) and length (1Oti bits) usirlg suln-product decoding
s,ith a ma-\imurn of 5 itcraf.ions. Thc codes are constructed randomly wlth
columu s'eigh1 il and row weight 6, and u,ith rnodilications matle to the codes
lo avoid 4-cycles.

which has l)roven successlul for the construction of binary
LDPC codcs with guaranteed ninimum girth and minimum
distance fSl 1101, [15] I181.

In this section we design .1-ary LDPC codes from finite
incidence slructures known as Kirkman triple systems (KTSs)
and unital designs. Let P be a ?r-set, and suppose that 6 is

a collection of i-subsets of P with the property that each l-
subset of P is in exactly ) of the elenents of 6. Then the
ordered pair ? : (P,13) is ca1led a l-(r, 1',\) design, or
sinrply a l-design. l'hc' elements of 2 are called poitrts, and
the elements of 6 are block,s.

If t > 2 and .\ ,= l, then a /-design is callcd a Steiner

$)s/ent, or e Stciner l-design. A Steiner 2-design thus has the
propcrty thal every pair of points in the design occur together
in exactly onc block of the design. A resoh.rtiolr of a design
Z) is a partition ofthc blocks ofD inlo classes such that each
point of 2 is in prccisely one block from each class; such a
design is said Io be resoh,able.

Resolvable Stciner 2-designs with block size 1 : 3 31s

known as Kirknan lriple systems. It is these incidence struc-
tures that we employ in tiris section; see aiso [16|. The second

class of incidence structures tlnt we employ are the unital
designs, an infinile class of 2-(nr3 1 1,m.* 1,1) designs;
see [19| fbr conslmction details and an application to the
conslmclion of binary LDPC codes.

Givcn a binary parity-cireck matrix, we randonly assign
values from GF(rl) 1o the non-zero cntries of structured binary
matriccs, and maintain their guaranteed regularity and mini-
lrrum girtir. The minimum distance properties guaranteed for
binary LDPU codes free of 4-cycles can also be translated to
q-ary LDPC codes, as we see in the foliowing.

Letuna 1. Tire minimum distance of a q-ary LDPC code
wilh column weight i' and no 4-cycles is:

t/,,,1r{1 F1.
Proo.l-: The result fbllows from Massey's observation that

"'in", 
,o,*t","ooiX") 'o 5 5s 6

Fig. 4: 'Ihe error correction peribrmance of binary a:r,d 4-try LDPC codss
with equivalent rate (0.57) and length (70 brts) itsing surn-product decoding
v'ith a maximum of 5 iterations. The value of the entries in the 4-ary KTS
codes are allocated randornly ltowever the posrtion of the non-zero entries
remains as detennined by the incidence of tlie KTS(15) design. The 4-ary
KTS cotle is compared to both binary and 4-ary codes constructed randomly
rvith colurnn u'erght 3. row u,eight 7, and 4-cycles rcrnoved when possible.

a weight 'ur codeword in a code with parity-check matrix 11

corresponds to a set of &' columns in 1{ which are linearly
depcndent [20]. For a btnary code this requires that any row
of iI incident in the set of ?o columns is incident an even
nunber of times. For non-binary LDPC codes the requirenent
lor linearly dependent columns is relaxed, nanely that any row
of 11 incident in the set of ?L) columns is incident at least twice.
However, if 4-cycles are avoided in 11 at least 1* 1 columns
are needed to ensure that every row incident in the column set

is incident trvice and so in both cases, binary and q-ary the

code minimum distance is lower bounded by 7 * 1. r
Note that the nininum distance of the q-ary LDPC code

will not necessarily be the same as the binary code constructed
liom the same matrix since dilferent allocations of q-ary values
to the non-zero entries in 11 can change the linear dependence

of the columns.

To demonstrate the benelit of constructing q-ary LDPC
codes using the incidence natrices of combinalclrial designs, a

very short (l'I : 35) and high rate (Il : 0 7) 4-ary LDPC code

which is free of rl-cycies is constrllcled by randomly allocating
values iionr GF(4) to the non-zero entries of the incidence ma-
trix of a Kirkman triple system on 15 points. Fig.4 shows the
perfonnance of this code compared to randomly constructed
binary LDPC codes of the same rate and equivalent length
(Arb - 70)

The performarlce improvement achieved by r"rsing algebraic
4-ary LDI'C codes is significant for such a short code: 1 dB
gain at a bit error rate of 10-3. The randomly constructed
4-ary codes perfomr quite poorly conpared to their binary
equivalents. Flowever, dr-re in most part to the glrarantecd girth,
thc 4-ary KTS codes significantly outperform the randomly
constructed'1-ary codes and outperform the binary codes as

wel1.
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A. Designing rank clefic:ient q-ary- LDPC codes

An interesting outcome of the research into binary algebraic
LDPC codes has been the recognition of the role of rank
deficient parity-check matrices in irnproving LDPC code per-
fbrmance t8l t101.'Ihus q-ary LDPC codes with parity-check
matrices containins a significant portion of linearly dc'pendent

rows are investigated here.

In generating a q-ery LDPC code from a binary matrix
which is rank deficient, assigning entries randomly will not
neccssarily preserve the linear dependence. To preserve linear
dcpendence we require that the q-ary sum over any combina-
tion of rows of 1I,, is zero iI'the binary sum of those rows
in 112 is zero. Thus it is the allocation of the entries within a

columlr rather that between columns which are important. An
examination ol the licld operations for GF(4) in Fig. 1 shows

that to preserve linear dependence we need only to allocate the
same q-ary value to all of the non-zero entries in a column.
Which r7-ary value is assigned to each column can be randomly
allocated across the natrix.

For example, a length 63, rate 213^ a-ary L,DPC code which
is licc of 4-cycles and contains 7 linearly rlependent rows in
11,, can be constructcd by starting rvitir the incidence matrix
of thc unital design on 28 points.

Note that had we wished to mainlain the distarrce distri-
bution of Ii this cor.rld have been achieved by allocating the

same held clement to every entry in each row of IIn. However
since the same minimum distance bound is guaranteed fbr both
H2 and I{n, regardless of the distribr"rtion of non-zero entries,
and since the q-ary code wouid be expected on average to have

a better minimum distance than the binary code this would not

be expected to improve the code performance.
Fig.5 shows thc performance of this code compared to

randomly constmcted binary I-DPC codes of thc same rale and

equivaient length. By constructing a q-ary code with linearly
dependent parity-check cquations a significant performance
gain can be achieved over randomly constmcted full rank
codes rvith the same length and rate.

V. DIscussIoN AND FUTURE DIRECTIONS

In this paper we considered algebraic constructions for non-

binary LDPC codes. We lind that the difficulty in constructing
q-ary LDPC codes which are fiee of smal1 cycles incre'Jses as

the code order is increased and thus algebraic constructions
which guarantee good girth are even more beneficial fbr non-
binary LDPCI codes.

'l'he codes we have considered here have not been optimized
with regards to either the choice of column rveight or field
order and so flrther pedormance improvements are likely.
Future work will aiso consider the increased tlexibility in
designing matrices with many linearly dependent rows r,vhich

is prclvided by increasing the field order.
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